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Abstract
The leading nonclassical term in the quantum dynamics of nonlinear oscillators
is calculated in the Moyal quasi-trajectory representation. The irreducibility
of the quantum dynamics to phase-space trajectories is quantified by the
discrepancy of the canonical quasi-flow and the quasi-flow of a general
observable. This discrepancy is shown to imply the breakdown of classical
realism that can give rise to a dynamical violation of Bell’s inequalities.

PACS numbers: 03.65.Sq, 03.65.Ud, 03.65.Fd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The behavior of quantum systems in the classical limit is often complicated because many
quantum observables become singular in this limit. There is, on the other hand, a large class
of observables that have a well-defined classical limit that includes the canonical position,
momentum and their powers and products. These observables characterize many important
dynamical quantum phenomena and effects, such as the squeezing of uncertainties. By the
correspondence principle, the time evolution of the expectation values of the nonsingular
observables approaches the classical orbits of the system in the semiclassical limit [1].

The dynamics of the expectation values can of course be expressed either in the
Schrödinger picture by evolving the initial state or density matrix in time, or in the Heisenberg
picture by evolving the observable of interest. However, the customary formulation of the
semiclassical quantum dynamics using time-dependent wavefunctions in the Schrödinger
picture [2–5] tends to hide the simple behavior of nonsingular observable expectation values,
because wavefunctions are singular in the classical limit. The same problem arises when
the dynamics is expressed with the time-dependent Wigner function [6]. Thus, the dynamics
of observables is studied here in the Heisenberg picture using the quasi-flow [7–9], that is,
time-dependent phase-space representations of the observables. This representation avoids
semiclassically singular quantities, and leads to an immediate recovery of the classical limit
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and a straightforward derivation of high order terms in the semiclassical expansion with the
help of the Moyal calculus [10].

Here, this method is applied to study the semiclassical dynamics of nonlinear oscillators—
dynamical systems defined on the Hilbert space of a single degree of freedom whose classical
limit describes oscillations around a single stable fixed point. Such systems not only serve
as a paradigm for studying quantum-classical correspondence, but also arise as effective
Hamiltonians describing the motion of a particular degree of freedom of interest in a more
complex system. One can cite as examples the dynamics of polaritons in strongly coupled
cavity QED-atom systems [12] and the relative motion of ions in linear traps [13].

The first purpose of this paper is to use the quasi-flow as a computational tool by deriving
concretely and explicitly its semiclassical expansion for a general nonlinear oscillator, with
emphasis on the leading quantum term. The immediate application of these results would be
a more accurate calculation of dynamical effects like squeezing that are expressed in terms of
nonsingular observables. However, the high order terms in the quasi-flow cannot be viewed
simply as corrections to the classical flow, because unlike the classical flow, the quasi-flow
of a general observable cannot be deduced solely from the canonical quasi-flow. That is, the
time evolution classical observable A(q, p), with q and p as the canonical coordinate and
momentum, respectively, is given by At(q, p) = A(qt , pt ). This property, which amounts to
the fact that classical dynamics is generated by trajectories, does not hold for the quasi-flow
(as defined precisely below) when h̄ is nonzero.

Therefore, the high order terms of the quasi-flow derived here quantify the failure of the
quantum dynamics to follow a trajectory framework. This failure has observable consequences.
Namely, suppose that there is a joint probability distribution for the canonical position and
momentum, which reproduces the results of quantum measurements of the initial state in
terms of a classical hidden variable [14, 15]. In other words, classical realism can be assigned
initially to the oscillator. Such a hidden variable underpinning can be supplied by the initial
state Wigner function if it is non-negative, like the Wigner function of a coherent state. Then
[16], under the nonlinear time evolution the hidden variable underpinning will cease to be
valid, and this failure can be observed by the violation of Bell inequalities if the oscillator is
initially entangled with another system. This effect, which can be described as a dynamical
breakdown of the initial classical realism, is studied here in the semiclassical limit, and its
quantification using the high order terms in the quasi-flow is the second goal of this paper.

The results of this paper are as follows: After reviewing the properties of the Moyal
quasi-flow, its semiclassical expansion for a broad class of nonlinear oscillators is derived,
and the explicit expressions for the leading quantum term are shown in equations (4)–(6).
Apparently, this is the first time that nonclassical terms in the quasi-trajectories of a nonlinear
system have been calculated explicitly for long evolution times—up to the Heisenberg time.
As explained above, a key distinguishing property of the high order terms in the quasi-flow
is that they cannot be deduced from the quasi-flow of the canonical observables; therefore,
the canonical quasi-flow has to be supplemented by information about the discrepancy of
the quasi-flow of a general operator with respect to the flow which would be generated for
this operator by the canonical quasi-flow. The leading term in the semiclassical expansion
of this discrepancy is derived in the form of a generating function presented in equation (9).
These results are next applied to study the dynamical breakdown of classical realism in the
semiclassical limit, by calculating the quasi-flow of a bounded observable. In the framework
of a hidden variable underpinning implied by non-negative Wigner function initial states, it is
shown that the conditions necessary for the persistence of the hidden variable underpinning are
not met (equation (10)) and how this failure may lead to dynamical Bell inequality violations.
The concepts and results are derived for an oscillator with an arbitrary form of nonlinearity;
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as an example, they are applied to the Hamiltonian of a single electromagnetic mode with a
Kerr nonlinearity.

The present study of nonlinear oscillator dynamics is greatly simplified by the recently
developed normal form theory of nonlinear oscillators [17, 18], according to which every
nonlinear oscillator can be unitarily transformed into a normal form which commutes with
the harmonic oscillator Hamiltonian. The dynamical analysis is carried out for a nonlinear
oscillator in a normal form. The calculational details required to apply the results to nonlinear
oscillators in a general form are presented in the appendix.

2. The Moyal quasi-flow

As is well known, although position and momentum are not simultaneously measurable in
quantum mechanics, it is still possible to define phase-space quasi-probabilites [19]. The
quasi-probabilities have to be accompanied by a symbol map, which assigns a phase-space
function to each Hilbert space operator, such that the expectation value of the operator is equal
to the phase-space integral of the symbol with the quasi-probability as a measure.

A natural alternative to the representation of dynamics by time-dependent wave or Wigner
functions is to use quasi-trajectories [7] defined by the symbols (qt (z), pt (z)) of the canonical
position q̂ t and momentum p̂t in the Heisenberg picture (we use the symplectic notation
z1 = −z2 = q, z2 = z1 = p with implied summation over repeated indices); at a given
time they define a mapping zt (z) from the classical phase plane to itself which will be termed
the quasi-flow. Since the symbols of q̂ and p̂ are the functions q and p (respectively), the
initial value of the quasi-flow is the identity mapping. The quasi-trajectories facilitate the
calculation of expectation values of the canonical variables as a function of time for any initial
state; the quasi-flow At(q, p) of a general observable is defined similarly as the phase-space
representation of the observable Ât in the Heisenberg picture.

The distinct advantage of using quasi-trajectories over more common semiclassical
methods is the harmless nature of the h̄ → 0 limit, where the quasi-trajectories simply
reduce to the classical trajectories. Moreover, the calculation of higher order terms in the
semiclassical expansion for the quasi-trajectories and the phase-space representation of other
Heisenberg-picture observables is straightforward. The same simplifying property holds for
thermal state Wigner functions [20], but not for pure states [21].

Evidently, the form of the quasi-flow depends on the choice of the quasi-probability and
symbol scheme. Here we choose the Wigner–Weyl representation [20, 22], since its convenient
properties make it particularly suitable for the analysis of the quasi-flow.

3. The canonial quasi-flow

Nonlinear oscillators are defined here as (spinless) one-degree of freedom quantum dynamical
systems governed by Hamiltonians whose Weyl symbol, the classical Hamiltonian H(q, p),
has a single nondegenerate phase-space minimum and no other fixed points. It has been
demonstrated in [17] that such Hamiltonians are unitarily equivalent to a normal form
Hamiltonian which commutes with the harmonic oscillator Hamiltonian. That is, there exists
a unitary operator Û such that

Q̂ = Û †q̂Û , P̂ = Û †p̂Û (1)

and

Ĥ = f (B̂), B̂ = Q̂2 + P̂ 2

2
. (2)
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The classical limit of this transformation is a Cartesian version of the canonical transformation
to action-angle variables; in particular the classical limit of B, the symbol of B̂, is the classical
action. Like its classical analog, the quantum normal form Hamiltonian is a representative of
its equivalence class where dynamics takes a particularly simple form. For this reason we will
assume here that the Hamiltonian has been reduced to a normal form, construct its quasi-flow
and study its properties. The application of the results to nonlinear oscillators in a general
form is dealt with in the appendix.

It is convenient to formulate the normal form dynamics in terms of the complex coordinate
β = 1√

2
(Q + iP) and the annihilation operator b = 1√

2
(Q̂ + iP̂ ) (note that b differs by a factor

of
√

h̄ from the usual definition). The symbol of bt will be denoted by βt . In complex
coordinates, B = |β|2 and B̂ = 1

2 (bb† + b†b).
Using the algebraic properties of the observables [23], their dynamics in a normal form

can be expressed as a rotation with an operator-valued frequency

bt ≡ e− Ĥ
ih̄ t b e

Ĥ
ih̄ t = e−i�+(B̂)t b = b e−i�−(B̂)t , (3)

where �±(B̂) = ± 1
h̄
(f (B̂ ± h̄) − f (B̂)). Note that limh̄→0 �± = ω is the classical (action-

dependent) frequency.
Either of the two expressions on the right-hand side of equation (3) forms a useful starting

point for a semiclassical expansion, since their factors have symbols with smooth dependence
on h̄. This fact makes the calculation of the semiclassical expansion of the normal-form quasi-
flow a straightforward application of the rules of the Moyal calculus; the resulting expression
to the second order in h̄ is

βt (β, β̄) = β
(c)
t

(
1 + h̄2β

(2)
t + O(h̄4)

)
, (4)

where β
(c)
t = β e−iω(B)t is the classical flow, and

Re β
(2)
t = 1

4 ((ω′(B)t)2 + Bω′(B)ω′′(B)t2), (5)

Im β
(2)
t = 1

24 (−2B(ω′(B)t)3 + 5ω′′(B)t + 2Bω′′′(B)t) (6)

are the leading quantum corrections to the modulus and phase of βt , respectively. Snapshots
of the coordinate quasi-flow and its deviation from the classical flow are shown in figure 1 for
a Kerr Hamiltonian.

By the phase-space correspondence principle, the expectation values of observables that
have a well-behaved classical limit are given by the phase-space integral of the corresponding
time-dependent classical observable with the initial Wigner function as a measure. Equation (4)
establishes the correspondence principle for the position and momentum, and equations (5)
and (6) express the drift generated by the quantum nonlinearities. More importantly, the
higher order terms in the quasi-flow capture the fundamental difference between classical
and quantum nonlinear dynamics. The implications of this fact are explored in the following
sections.

A remark is in order regarding the amplitude drift implied by the nonvanishing of Re β
(2)
t ,

since energy conservation implies conservation of the action operator B̂. Rather than implying
that Re β

(2)
t = 0, conservation of energy determines Re β

(2)
t solely on the basis of the classical

flow. Thus, on one hand Bt(β) = B, and on the other hand

Bt(β) = βt � β̄t + β̄t � βt

2
= B + h̄2

(
2Bβ

(2)
t − 1

8
∂µ∂νβ

(c)
t ∂µ∂νβ̄

(c)
t

)
+ O(h̄4), (7)

where � stand for the Moyal product, ∂µ = ∂
∂zµ , and ∂µ = − ∂

∂zµ
. The equality of the two

expressions for Bt implies that Re β
(2)
t = 1

16B
∂µ∂νβ

(c)
t ∂µ∂νβ̄

(c)
t , consistently with equation (5).
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Figure 1. Left: contour plot of a snapshot of the second-order semiclassical approximation
to the coordinate quasi-flow Qt(Q, P ) for a nonlinear oscillator with a Hamiltonian H =
ω0B̂ + 1

2 ω1B̂
2,

ω1h̄
ω0

= 0.04. The snapshot is taken at t = 2π/ω0, and the Q, P coordinates

are shown in units of
√

h̄. Larger values are associated with lighter shades of grey. Right: the
leading quantum correction to the coordinate quasi-flow Q

(2)
t (Q, P ) divided by

√
B, for the same

system and time. Positive value regions are marked with ‘+’ signs and shown in red hues and
negative regions are marked with ‘−’ and marked in blue; the color intensity encodes the absolute
value, with maximal values near 20%.

A more fundamental issue regarding the semiclassical expansion of the quasi-flow is its
nonuniformity in time. It is evident from the explicit expressions (4)–(6) that the expansion,
which is derived for a fixed time interval, ceases to be valid at late enough times. In other
words, the limits h̄ → 0 and t → ∞ do not commute, a manifestation of a general property
[21]. In particular, the expansion based on classical dynamics cannot capture wavefunction
revival. Nevertheless, the expansion remains valid for times which are larger than any classical
time scale; see figure 1 for an example. It follows from equations (4)–(6) that the time scale
of validity is the Heisenberg time (h̄ω′)−1; the typical number of oscillations in the interval of
validity is B0/h̄, where B0 = ω/ω′ is the typical action scale of nonlinearity.

4. The quasi-flow of a general observable

Classical dynamics is fully described by a set of trajectories z
(c)
t (z) that gives the time evolution

of classical phase-space distributions or, alternatively, of classical observables. This is no
longer true for nonlinear quantum dynamics, a manifestation of the impossibility of assigning
a definite instantaneous position and momentum values to a quantum particle.

In the semiclassical limit the trajectory framework still holds approximately, though. That
is, if an observable Â is represented by the symbol A(β, β̄), and its time evolution Ât by At ,
then

dt (Â) = At(β) − A(βt ) = O(h̄2). (8)

dt (Â) will be termed the discrepancy of the observable Â at time t, since it measures the failure
of the quantum dynamics to follow trajectories. As such, it will be used in section 5 as a
diagnostic for the departure from classical realism.
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Figure 2. Left: contour plot of a snapshot of the second-order semiclassical approximation to the
quasi-flow of the square of the coordinate Q2

t (Q, P ) for the nonlinear oscillator used in figure 1
at time π/ω0. Larger values are associated with lighter shades of grey. Right: the leading term
discrepancy dt (Q

2
t ) divided by B, for the same system and time. The coding system is the one

used for the right panel of figure 1, and the maximal values are near 7%.

Table 1. Coefficients in the leading term of the discrepancy of quasi-flows associated with the
generating function, equation (9).

P1 = 1
4 iᾱβ̄

(c)
t α2 + 1

4 iᾱ2β
(c)
t α

P2 = − 1
8 ᾱ3(β

(c)
t )3 + 1

2 ᾱ2(β
(c)
t )2 + 1

8 α3(β̄
(c)
t )3 + 1

2 α2(β̄
(c)
t )2 + 1

2 Bαᾱ

− 1
8 Bαᾱ2β

(c)
t + 1

8 Bα2ᾱβ̄
(c)
t

P3 = 1
12 iBᾱ3(β

(c)
t )3 + 1

12 iBα3(β̄
(c)
t )3 − 1

4 iBᾱ2(β
(c)
t )2 + 1

4 iBα2(β̄
(c)
t )2

+ 1
4 iB2αᾱ2β

(c)
t + 1

4 iB2α2ᾱβ̄
(c)
t

P4 = 1
24 iᾱ3(β

(c)
t )3 + 1

8 iBαᾱ2β
(c)
t + 1

24 iα3(β̄
(c)
t )3 + 1

8 iBα2ᾱβ̄
(c)
t

P5 = 1
4 Bᾱ2(β

(c)
t )2 + 1

4 Bα2(β̄
(c)
t )2 + 1

2 B2αᾱ

The discrepancy of a general observable in the Q̂, P̂ algebra is extractable from the
discrepancy of the generating function eαb

†
t −ᾱbt of the complex parameter α, which is calculated

by another application of the Moyal calculus,

dt

(
eαb

†
t −ᾱbt

) = h̄2eαβ̄
(c)
t −ᾱβ

(c)
t (ω′(B)tP1 + (ω′(B)t)2P2

+ (ω′(B)t)3P3 + ω′′(B)tP4 + ω′(B)ω′′(B)t2P5) + O(h̄4), (9)

where P1, . . . , P5 are low-degree polynomials in B, |α|2, αβ̄
(c)
t and ᾱβ

(c)
t , whose explicit form

is shown in table 1. Together with the quasi-flow, equation (9) gives full information on the
quantum dynamics of the (normal-form) nonlinear oscillator to O(h̄4).

A snapshot of the quasi-flow for the square of the coordinate and its discrepancy is shown
in figure 2 for the same Hamiltonian used in figure 1. The example shows the result of
evolution for a period where classical nonlinearities are strong, but the quantum effects, such
as the discrepancy are still small.
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Figure 3. Contour plot of a snapshot of the second-order semiclassical approximation to the
quasi-flow of the observable C = cos(αP̂ ), α = π/(6

√
h̄), for the nonlinear oscillator used in

figure 1 at time π/(2ω0). The colored portions show regions of breakdown of realism by the
Weyl–Wigner representation, where Ct > 1 (light red) or Ct < −1 (dark blue).

5. Breakdown of classical realism by quantum nonlinear dynamics

The assignment of classical realism (or a hidden variable underpinning) to a quantum state
consists of a probability density ρ(λ), and representations q(λ) and p(λ), which describe
the statistics of the position and momentum (respectively) using the hidden variable λ. The
Wigner function of a state serves as a hidden variable underpinning if it is non-negative. It also
satisfies Bell’s locality postulates, and was therefore used by Bell to show that his inequalities
hold for an Einstein–Podolosky–Rosen-like entangled state [14]. It has been shown later [24]
that Bell’s argument contained an implicit assumption, and that it is possible to construct
Bell operators which violate the inequalities even when the Wigner function is positive. As
explained in [16], the additional assumption needed to derive Bell’s inequalities relates to the
bounded local observable from which the Bell operator is constructed. Namely the hidden
variable representation A(λ) of such an observable Â should be bounded by ‖Â‖, the norm of
Â. Observables which satisfy this condition will be termed proper.

When a system-measurement setup which initially supports a local hidden variable
underpinning is subjected to nonlinear evolution, the failure of the quantum dynamics to
follow trajectories implies that the classical realism inherent in the initial setup breaks down,
a fact which may be detected by the violation of Bell’s inequalities. When the hidden variable
underpinning is supplied by a non-negative Wigner function, the breakdown of classical
realism is manifest either by the appearance of negative values for the Wigner function (in the
Schrödinger picture) or by the appearance of values of the Weyl representation of the local
bounded observables not bounded by the norm of the observable (in the Heisenberg picture)
[16].

The dynamical analysis presented above is naturally applied to study this effect in the
semiclassical limit. Specifically, the discrepancy of the quasi-flow of an initially proper
observable with respect to the canonical quasi-flow, defined in section 4, is directly related to
its failure to be proper at later times.

As an example for a bounded observable consider the observable Ĉ = cos αP̂ , which
is bounded by 1; its symbol is C = cos(αP ) (in real coordinates) so that Ĉ is a proper
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observable. By the previous arguments we expect that Ĉt becomes improper for positive time,
i.e. that there exist phase-space points where its symbol no longer satisfies |Ct | � 1. The
regions where the realism inequality |Ct | � 1 is liable to fail are where it is already saturated
classically, for example at points mapped by the classical flow to the P = 0 line. Indeed, by
equation (9)

Ct

(
β

(c)
−t (Q, 0)

) = 1 + h̄2 α2

8

(
3ω′

(
Q2

2

)
+ Q2ω′′

(
Q2

2

))
ω′

(
Q2

2

)
t2 + O(h̄4), (10)

where β
(c)
−t (Q, 0) is the point mapped by the classical flow to (Q, 0) at time t. For positive

times this expression is larger than 1 for a large class of nonlinear oscillators, so that Ĉt

becomes improper under these nonlinear dynamics; the regions of failure of classical realism
for Ĉt under a Kerr nonlinearity are shown in figure 3.

As explained above, this result implies the possibility of Bell inequality violations in an
entangled state with a non-negative Wigner function. Bell measurements constructed from the
complementary observables cos(αq̂) and cos(αP̂ ) (for each party) are guaranteed to satisfy
Bell’s inequalities initially. However, if one or both of the parties undergoes dynamics in a
nonlinear oscillator prior to the measurement of the Bell operators, then Bell’s inequalities are
liable to be violated according to equation (10), and the amount of violation increases with
time. Further study of this topic is beyond the scope of the present work.

6. Conclusions

The semiclassical expansion of the Moyal quasi-trajectories is a nonsingular series in powers
of h̄. As such, it does not easily capture quantum features of the dynamics which are singular
in the classical limit, like the evolution of interference patterns; on the other hand it provides
a direct route to study dynamical quantities which depend smoothly on h̄, without the need to
go through painstaking stationary phase calculations just to recover the leading classical term,
and thereby explore the consequences of quantum nonlinear evolution in the semiclassical
limit.

The straightforward expansion derived here for nonlinear oscillators holds for a finite
time interval, and is nonuniform in time, a universal property of dynamical semiclassical
approximations, which stems from the different asymptotic nature of the classical and quantum
dynamics. Nonetheless, preliminary results indicate that the semiclassical approximation to
the quasi-flow can be extended beyond the Heisenberg time; in this case, however, the classical
limit would be once more singular.
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Appendix. Dynamics of nonlinear oscillators in a general form

Since every nonlinear oscillator is unitarily equivalent to a normal form oscillator [17], the
results presented above yield the quasi-flow of any given nonlinear oscillator after it has been
transformed to its normal form. Still, it is also of interest to express the result in terms of the
original observables q̂, p̂ rather than the transformed observables Q̂, P̂ .

In the classical limit, the nonlinear oscillator flow can be expressed as a composition
of three canonical transformations (q, p) −→ (A, φ) −→ (A, φ + ω(A)t) −→ (qt , pt ),
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where the first and last arrows are the transformation to action-angle variables and its
inverse (respectively), and the middle arrow is the time-evolution canonical transformation.
Analogously the quantum evolution is the composition of three unitary transformations,
(q̂, p̂) −→ (Q̂, P̂ ) −→ (Q̂t , P̂ t ) −→ (q̂t , p̂t ). Each unitary transformation can be
represented by its Weyl symbol. The Weyl representation for the normal form transformation
was derived in [17], while the representation for the time evolution is the quasi-flow given by
equations (4)–(6).

Unlike classical canonical transformations, however, the Weyl representation of the
composition of the transformations is not equal to the composition of Weyl representations.
Therefore, in order to obtain the general-form quasi-flow, a composition formula for Weyl
symbols is needed. That is, given that the Weyl symbol of Â with respect to the canonical set
Q̂, P̂ is A(z), and that the symbols of Q̂ and P̂ with respect to the set q̂, p̂ are Zµ(z), to find
the Weyl symbol a(z) of Â with respect to q̂, p̂. In the following we derive a semiclassical
expansion of a(z) to O(h̄4), which, together with the previous results, yields the quasi-flow
z
µ
t (z) of nonlinear oscillators in a general form.

The composition formula is derived directly from the definition of the Weyl symbol. By
definition a(z) = Tr Â�(z), where �(z) = ∫

dz′
h

e
i
h̄
(ẑµ−zµ)z′

µ are the basis operators for the
Weyl representation [19] with respect to the set ẑ, while Â = ∫

dz
h
A(z)�̃(z), where �̃(z) are

the basis operators with respect to Ẑ. Therefore,

a(z) =
∫

dz′

h
A(z′) Tr �̃(z′)�(z) =

∫
dz′A(z′)δ(z′; z), (A.1)

where δ(z′; z), the symbol of �̃(z′) with respect to ẑ divided by h, has the semiclassical
expansion

δ(z′; z) =
(

1 − h̄2

((
1

16
∂k∂lZ

µ∂k∂lZν

)
∂µ∂ν −

(
1

24
∂kZ

λ∂k∂lZµ∂lZ
ν

)
∂λ∂µ∂ν

))

× δ(z′ − Z(z)) + O(h̄4). (A.2)

Using this result back in equation (A.1) gives the composition rule a(z) = Å(z, Z(z)),

Å(z, z′) =
(

1 − h̄2

((
1

16
∂k∂lZ

µ∂k∂lZν

)
∂µ∂ν +

(
1

24
∂kZ

λ∂k∂lZµ∂lZ
ν

)
∂λ∂µ∂ν

))
A(z′).

(A.3)
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